Nguyên Hàm Của Hàm Số Lượng Giác

Nguyên hàm lượng giác là kiến thức vô cùng quan trọng trong chương trình toán cấp 3. Các công thức nguyên hàm lượng giác có nhiều mức độ, từ hàm sơ cấp cho đến các công thức hàm hợp, theo đó là rất nhiều dạng bài tập khác nhau. Marathon Education sẽ tổng hợp các công thức lượng giác cơ bản, công thức nguyên hàm lượng giác và các dạng bài tập vận dụng liên quan qua bài viết sau.

Các công thức lượng giác cần nhớ

\begin{aligned} &\small\text{1. Hằng đẳng thức lượng giác:}\\ & \ \ \ \ \bull sin^2x+cos^2x=1\\ & \ \ \ \ \bull \frac{1}{sin^2x}=1+cot^2x\\ & \ \ \ \ \bull \frac{1}{cos^2x}=1+tan^2x\\ &\small\text{2. Công thức cộng:}\\ & \ \ \ \ \ \bull sin(a\pm b)=sina.cosb\pm sinb.cosa\\ & \ \ \ \ \ \bull cos(a\pm b)=cosa.cosb\mp sina.cosb\\ & \ \ \ \ \ \bull tan(a\pm b)=\frac{tana \pm tanb}{1\mp tana.tanb}\\ &\small\text{3. Công thức nhân đôi:}\\ & \ \ \ \ \ \bull sin2a=2sina.cosa\\ & \ \ \ \ \ \bull cos2a=cos^2a-sin^2a=2cos^2a-1=1-2sin^2a\\ &\small\text{4. Công thức nhân ba:}\\ & \ \ \ \ \ \bull sin3a=3sina-4sin^3a\\ & \ \ \ \ \ \bull cos3a=4cos^3a-3cosa\\ &\small\text{5. Công thức hạ bậc:}\\ & \ \ \ \ \ \bull sin^2a=\frac{1-cos2a}{2}\\ & \ \ \ \ \ \bull cos^2a=\frac{1+cos2a}{2}\\ &\small\text{6.Công thức biến đổi tích thành tổng:}\\ & \ \ \ \ \ \bull cosa.cosb=\frac{1}{2}[cos(a-b)+cos(a+b)]\\ & \ \ \ \ \ \bull sina.sinb=\frac{1}{2}[cos(a-b)-cos(a+b)]\\ & \ \ \ \ \ \bull sina.cosb=\frac{1}{2}[sin(a-b)+sin(a+b)]\\ \end{aligned}

Nhận xét